December 13-15 2016, Boston, MA

Optimizing the development of biologics through the application of computational tools

22 speakers, including:

- Brad Sherborne
 Director, Computer-Aided Drug Design
 Merck

- Surjit Dixit
 CTO
 Zymeworks

- Vanita Sood
 Global Head of Drug Structure, Prediction & Design
 EMD Serono

- Stanley Krystek
 Senior Principal Scientist
 Bristol-Myers Squibb

- Chris Bailey-Kellog
 Professor
 Dartmouth College

- Arvind Sivasubramanian
 Senior Scientist, Computational Biology
 Adimab

- Sandeep Kumar
 Senior Principal Scientist, Biotherapeutics
 Pharmaceutical Sciences
 Pfizer

- Jeffrey Way
 Senior Staff Scientist
 Wyss Institute, Harvard University

- Eliud Oloo
 Manager, Structure, Genomics & Bioinformatics
 Sanofi Pasteur Biologics

• Improve the success rate of biologic drug development
• Apply computational tools to design libraries and select lead candidates more efficiently
• Maximize the physical properties of candidates by applying computational approaches

This conference was of outstanding value. First class presentations, great opportunity for networking and perfect logistics!

MedImmune

www.computationaldrugdevelopment.com
Tel: +1 212 537 5898 | Email: info@hansonwade.com Computational Drug Development
Optimize the development of biologics by harnessing computational power

Biologic drugs represent an increasingly significant proportion of company pipelines. The potential for computational tools to add tangible value to the development of biologics is huge, yet this potential remains largely untapped. **Computational Drug Development 2016** will bridge the gap between the application of computational tools for small molecule and biologic drug development. Join your colleagues to discover how to optimize physical properties, robustly predict protein/protein interactions, enhance library design and candidate selection and seamlessly integrate computational tools into the wet lab workflow.

This conference will enable you to learn directly from computational thought leaders in **pharma/biotech, academia and software provider organizations**. Add immediate value to your drug development process by engaging with **bioinformaticians, computational and structural biologists**.

10 Reasons to Attend Computational Drug Development 2016

1. Investigate how computational tools can **optimize the manufacturability and physical properties of biotherapeutics**
2. Successfully integrate computational and experimental methods to **improve the success rate of drug development**
3. Use predictive computational tools to **optimize the developability of biologics early in drug discovery**
4. Gain invaluable insights into how **informatics, modeling and simulation** can overcome key challenges encountered in the development of biologics
5. **Benchmark against the leaders in the field** to understand how they have effectively integrated in-house and commercially available computational tools into their biologics development workflow
6. Discuss how the field can **leverage the wealth of computational insights gained in small molecule drug development** to impact the development of biologics successfully
7. Beyond monoclonal antibodies: Understand how computational tools can improve the development of **bispecifics, peptides, vaccines and mRNA-based therapeutics**
8. **Reduce development costs** by designing and selecting lead candidates more efficiently
9. Utilize bioinformatics tools to map out target recognition sites and **enhance structure-based biologic drug design**
10. **Examine real-world case studies** detailing how the use of MD simulations, *in silico* affinity maturation and computational structural modeling have enhanced experimental design

Hear what attendees of our biologics events have to say

- The conference content was precisely what we were looking for, and the networking opportunities allowed us to forge new relationships with almost all the groups we were hoping to.
 - **Zymeworks**

- This is an eye-opening conference that has brought together the greatest minds in the subject.
 - **Genentech**
Speakers

Joseph Audie
CEO & CSO
CMDBioscience

Chris Bailey-Kellogg
Professor
Dartmouth College

Jonathan Davis,
Principal Scientist,
Bristol-Myers
Squibb

Rafael Depetris
Director, Molecular
Oncology
Kadmon
Pharmaceuticals

Surjit Dixit
CTO
Zymeworks

Feng Dong
Senior Scientist
Abbvie

Eric Feyfant
Director, Biologics
Business
Development
& Applications,
Schrodinger

John Gunn
Senior Research
Scientist
Chemical Computing
Group

Sookhee Ha
Principal Scientist,
Modeling &
Informatics
Merck

Christine Hajdin
Investigator
Novartis

Philip Kim
Associate
Professor
University of
Toronto

Stanley Krystek
Senior Principal
Scientist
Bristol-Myers
Squibb

Sandeep Kumar
Senior Principal
Scientist, Biotherapeutics
Pharmaceutical Sciences
Pfizer

Michelle Lynn Hall
Senior Scientist, Computational
Chemistry
Moderna Therapeutics

Eliud Oloo
Manager, Structure,
Genomics &
Bioinformatics
Sanofi Pasteur Biologics

Deepangi Pandit
Molecular Modeler
Cell Signalling
Technology

Enrico Purisima
Team Leader, Molecular
Modeling
NRC Canada

Vanita Sood
Global Head of Drug Structure,
Prediction & Design
EMD Serono

Brad Sherborne
Director, Computer-Aided Drug Design
Merck

Arvind Sivasubramanian
Senior Scientist, Computational Biology
Adimab

Jeffrey Way
Senior Staff Scientist,
Wyss Institute,
Harvard University

GSK

I thought that conference was well organized, sessions were well planned and we had a good mix of academic & pharma speakers. So overall conference was a great success.
Conference Day One | Wednesday December 14

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.30</td>
<td>Registration, Coffee & Networking</td>
</tr>
<tr>
<td>8.20</td>
<td>Chair’s Opening Remarks</td>
</tr>
<tr>
<td>8.30</td>
<td>Keynote: More Than Pretty Pictures And Numbers: Opportunities And Lessons From Computational Drug Discovery</td>
</tr>
<tr>
<td></td>
<td>- Transferrable lessons from computational drug discovery: Molecular modelers and data scientists</td>
</tr>
<tr>
<td></td>
<td>- Examples of the breadth of impact and versatility of computational approaches</td>
</tr>
<tr>
<td></td>
<td>- The science, technology and tool lifecycle as a guide to gaining and maturing impact</td>
</tr>
<tr>
<td>9.00</td>
<td>Incorporating Risk Assessment For Protein Therapeutics In Early Discovery Research</td>
</tr>
<tr>
<td></td>
<td>- Discuss the role of discovery research moving beyond optimization of biological activity utilizing antigen design and epitope steering</td>
</tr>
<tr>
<td></td>
<td>- Identifying structural or sequence-based elements that may compromise the stability and developability of a given biopharmaceutical using predictive computational tools</td>
</tr>
<tr>
<td></td>
<td>- Insights into the role of protein engineering used to generate drug candidates or candidate libraries with improved pharmaceutical properties</td>
</tr>
<tr>
<td>9.30</td>
<td>Integrated Computational And Experimental Methods For Inhibitor Engineering</td>
</tr>
<tr>
<td></td>
<td>- Discover how tight integration of computational and design and screening proves advantageous in many respects</td>
</tr>
<tr>
<td></td>
<td>- New approaches in sampling methods take optimal advantage</td>
</tr>
<tr>
<td></td>
<td>- Enabling of screening methods that can screen previously untargetable proteins</td>
</tr>
<tr>
<td>10.00</td>
<td>Speed Networking & Morning Refreshments</td>
</tr>
<tr>
<td>11.30</td>
<td>Computational Advances To Protein Engineering, From Hit Selection To Optimization</td>
</tr>
<tr>
<td></td>
<td>- Identification of liabilities: Aggregation, solubility, viscosity</td>
</tr>
<tr>
<td></td>
<td>- Detecting key residues</td>
</tr>
<tr>
<td></td>
<td>- Lead optimization: The art of mutation’</td>
</tr>
<tr>
<td>12.00</td>
<td>Fully Automated Structure-Based Antibody Humanization Design</td>
</tr>
<tr>
<td></td>
<td>- Understanding the relationship among antibody sequence, structure and function</td>
</tr>
<tr>
<td></td>
<td>- Learn about a fully automated antibody design program including sequence analysis, structure modeling, and structure-based design</td>
</tr>
<tr>
<td></td>
<td>- Discussing the impact of the computational design in biologics drug discovery</td>
</tr>
<tr>
<td>12.30</td>
<td>Mastermind: Cross-Industry Perspectives On The Successful Integration Of Computational Tools In The Drug Development Process</td>
</tr>
<tr>
<td></td>
<td>- How can computational tools enhance experimental design?</td>
</tr>
<tr>
<td></td>
<td>- Enhancing the communication between bioinformaticians and structural and computational biologists</td>
</tr>
<tr>
<td></td>
<td>- Discussing strategies to increase the awareness of computational capabilities within organizations</td>
</tr>
<tr>
<td></td>
<td>- Developing clear, testable hypotheses against which computational models can be tested</td>
</tr>
</tbody>
</table>

This session facilitates in-depth discussions between participants in an informal environment. Collaborate with your peers to discuss the most pressing issues in the field and leave with clear, actionable insights to enhance the integration of computational tools at your organization.

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15</td>
<td>Lunch & Networking</td>
</tr>
</tbody>
</table>

Tel: +1 212 537 5898
Email: info@hansonwade.com
[Computational Drug Development](http://www.computationaldrugdevelopment.com)
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Presenter</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.15</td>
<td>Structural Analysis Of Fabs By Modeling And X-Ray Crystallography: Two Ends That Meet</td>
<td>Rafael Depetris</td>
<td>Molecular Oncology, Kadmon Pharmaceuticals</td>
</tr>
<tr>
<td>2.45</td>
<td>Computational Modeling Of Antibodies And Antibody: Antigen Interactions</td>
<td>Arvind Sivasubramanian</td>
<td>Computational Biology, Adimab</td>
</tr>
<tr>
<td>3.15</td>
<td>Modeling Protein-Protein Interactions With First-Principles Docking</td>
<td>John Gunn</td>
<td>Chemical Computing Group</td>
</tr>
<tr>
<td>3.45</td>
<td>Afternoon Refreshments & Networking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>An Informatics Approach To Describing Protein/Protein And RNA/Protein Interfaces</td>
<td>Christine Hajdin</td>
<td>Investigator, Novartis</td>
</tr>
<tr>
<td>4.45</td>
<td>Computational Approaches To Designing Novel Vaccine Antigens Targeted At Diverse And Rapidly Mutating Pathogens</td>
<td>Eliud Oloo</td>
<td>Manager, Structure, Genomics & Bioinformatics, Sanofi Pasteur Biologics</td>
</tr>
<tr>
<td>5.15</td>
<td>In Silico Design Of mRNAs As Novel Therapeutics, From Bioinformatics To Quantum Mechanics</td>
<td>Michelle Lynn Hall</td>
<td>Senior Scientist, Computational Chemistry, Moderna Therapeutics</td>
</tr>
<tr>
<td>5.45</td>
<td>Chair’s Closing Remarks</td>
<td>Jonathan Davis</td>
<td>Principal Scientist, Bristol-Myers Squibb</td>
</tr>
</tbody>
</table>
Conference Day Two | Thursday December 15

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.50</td>
<td>Chair’s Opening Remarks</td>
</tr>
<tr>
<td>9.00</td>
<td>Keynote: Biopharmaceutical Informatics – A Strategic Vision for Improved Translation of Biologic Drug Discoveries into Medicines
Speaker: Sandeep Kumar, Senior Principal Scientist, Biotherapeutics Pharmaceutical Sciences, Pfizer
Topics:
- Understand the concept of biopharmaceutical informatics and its applications to drug discovery and development
- Enable Materials-free developability assessments via computational tools of informatics and molecular biophysics
- Discover new computational applications to make the biologic drug discovery and development process more efficient</td>
</tr>
<tr>
<td>9.30</td>
<td>Combining Informatics, Molecular Modeling And Empirical Approaches For Improved Manufacturability Of Biologics
Speaker: Vanita Sood, Global Head of Drug Structure, Prediction & Design, EMD Serono
Topics:
- Gain insights into an in-house developed antibody informatics tools and algorithms for use in hit discovery and hit optimization
- Investigate the use of molecular modeling and protein design to streamline antibody optimization and epitope mapping
- The power of combining in silico approaches with high throughput in vitro and rapid analytical methods</td>
</tr>
<tr>
<td>10.00</td>
<td>Morning Refreshments & Networking</td>
</tr>
<tr>
<td>11.00</td>
<td>Structure Guided Approaches To Multifunctional Therapeutic Protein Design
Speaker: Surjit Dixit, CTO, Zymeworks
Topics:
- Discuss the elements of computational tools with applications in protein engineering
- Discuss protein engineering as an iterative process of understanding structure-function relationships
- Learn about the development of the Azymetric bispecific antibody platform and its utility</td>
</tr>
<tr>
<td>11.30</td>
<td>Enhancing Therapeutic Efficacy Through The Computationally-Driven Depletion Of T Cell Epitopes
Speaker: Chris Bailey-Kellog, Professor, Dartmouth College
Topics:
- Novel computational methods to optimize biotherapeutics simultaneously for immunogenicity and function
- Examine methods to integrate protein sequence and structure analysis with epitope prediction, and design individual variants or combinatorial libraries
- Examine a case study in which the depletion of T cell epitopes in application to the potent anti-staphylococcal enzyme lysostaphin resulted in a reduced antibody response and consequently enhanced efficacy in an immune competent disease model</td>
</tr>
<tr>
<td>12.00</td>
<td>Panel Discussion: What Properties Do We Need To Model?
Speakers: Brad Sherborne, Director, Computer-Aided Drug Development, Merck; Stanley Krystek, Senior Principal Scientist, Bristol-Myers Squibb; Deepangi Pandit, Molecular Modeler, Cell Signalling Technology
Topics:
- Examining the properties that we are currently able to model using computational tools
- Which models are effective? How do we calculate and interpret success?
- How can these models be improved in the future and which properties should modeling tools be applied to?

Hear a variety of perspectives from some of the leading experts in computational drug development. This focused discussion provides the chance to engage with the panellists over any issues that have arisen during the course of the conference program and have your most burning questions answered.</td>
</tr>
</tbody>
</table>
Improving The Developability Of Biologics Using Computation: Focus On Physical Properties

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.45</td>
<td>ADAPT (Assisted Design of Antibody and Protein Therapeutics)</td>
</tr>
<tr>
<td></td>
<td>- Assessment of consensus scoring functions for antibody-antigen binding affinity ranking</td>
</tr>
<tr>
<td></td>
<td>- Investigate a robust platform for affinity maturation that interleaves in silico virtual mutations with experimental validation</td>
</tr>
<tr>
<td></td>
<td>- Case studies validating and applying the ADAPT platform</td>
</tr>
<tr>
<td>2.15</td>
<td>Data-Driven And Physics-Based Computer-Enabled Peptide Drug Design With CMDInventus</td>
</tr>
<tr>
<td></td>
<td>- Development and validation of CMDInventus</td>
</tr>
<tr>
<td></td>
<td>- Case study one: Using CMDInventus to design peptide modulators of challenging protein-protein interactions</td>
</tr>
<tr>
<td></td>
<td>- Case study two: Using CMDInventus to optimize peptide proteolytic stability</td>
</tr>
<tr>
<td>2.45</td>
<td>Afternoon Refreshments & Networking</td>
</tr>
<tr>
<td>3.15</td>
<td>Optimizing The Permeability Of Peptides</td>
</tr>
<tr>
<td></td>
<td>- Examining physicochemical parameters that are related to permeability</td>
</tr>
<tr>
<td></td>
<td>- Discussing library design and selection of peptide using physicochemical parameters</td>
</tr>
<tr>
<td></td>
<td>- Analyzing permeability vs target affinity</td>
</tr>
<tr>
<td>3.45</td>
<td>Quantitative And Spatial Optimization Of Therapeutic Fusion Proteins</td>
</tr>
<tr>
<td></td>
<td>- Constructing a therapeutic fusion protein requires optimizing elements that have evolved in a different context</td>
</tr>
<tr>
<td></td>
<td>- Coarse-grained molecular dynamics allow modeling of artificial protein behavior</td>
</tr>
<tr>
<td></td>
<td>- Targeted erythropoietin as an optimized, tissue-targeted therapeutic with reduced side effects</td>
</tr>
<tr>
<td>4.15</td>
<td>Chair’s Closing Remarks</td>
</tr>
</tbody>
</table>

I was delighted to see how openly technical issues and unsolved scientific problems were discussed. — Agenus
Workshop A

Utilizing Bioinformatics In The Discovery Of Biotherapeutics

Tuesday December 13, 2016 | Time: 9:00am-12:00pm

Biologicals are one of the fastest growing pharmaceuticals. Good science decisions depend on digesting a growing scale of complexity in information. It is important to differentiate data collection and data warehousing from decision making that shapes experimental design.

This workshop will focus on how information feeds experiment.

Examining real-life case studies and examples, this interactive session will discuss how biologics need to satisfy the following key goals:

- Target action (potency, selectivity...)
- Pharmaceutical properties (viscosity, solubility...)
- Drug properties (antigenicity, PK...)
- Safety (surprising biology...)
- Intellectual property protection

Antibody production libraries have been improved. They increase the odds of obtaining well behaved products. Even so, the feedback loop of experiment, selection and properties represents a significant information challenge.

The needed properties benefit from a structural understanding. Crystal structures are now more easily obtained, sources of sequence data are rapidly growing and excellent tools for structural modeling are available. These are increasingly important sources of information but are also increasing in complexity.

This workshop will examine how these factors can enhance experimental design. We will discuss the problems in a pre-competitive setting, share experiences and highlight emerging challenges and solutions.

Workshop leader

Dominic Ryan, Independent Consultant

Dominic Ryan is a drug discovery executive who moves between chemistry and biology, identifying the right question and applying the right and emerging tools to solve tomorrow’s problems. Over 26 years in drug discovery, he has built, led and managed high throughput screening, protein crystallography, SPR, compound management, NMR spectroscopy, bioinformatics, cheminformatics, molecular modeling and high throughput purification.

Workshop B

Using Computational Tools To Design And Optimize Novel Biologics

Tuesday December 13, 2016 | Time: 1:00pm-4:00pm

The potential space of multi-component engineered therapeutic proteins is large and has scarcely been explored. In contrast to small molecules, there is no paradigm for design and optimization of such proteins. Attend this workshop for the chance to discuss the landscape of novel biotherapeutics, with a focus on fusion proteins.

Engage directly with computational drug developers and protein engineers to learn how to implement the computational tools that can aid in the design and development of novel protein-based therapeutics. Create novel therapeutics that go beyond monoclonal antibodies and naturally occurring proteins.

Join your colleagues to discuss:

- How to define product profiles that can be achieved by rational design
- How to design useful starting molecules
- How to develop computational tools that can enhance the development of biologic therapeutics
- Factors that contribute to immunogenicity
- Engineering cell and tissue targeting to minimize side effects
- Optimizing pharmacokinetics

Workshop leader

Jeffrey Way, Senior Staff Scientist, Wyss Institute, Harvard University

Jeffrey Way, Ph.D. (CEO) is a Senior Staff Scientist at Harvard’s Wyss Institute for Biologically Inspired Engineering, where he has led work on targeted fusion proteins and synthetic biology since 2009. Dr. Way is also the founding CEO of General Biologics, Inc.; this Company’s goal is to commercialize highly engineered and tissue-targeted fusion proteins. Previously Dr. Way was a Director of Structural Biology and Director of Intellectual Property at a Boston-based unit of Merck KGaA, where he built and led a team that evaluated and conceptualized new engineered proteins based on structural, functional, competitive and IP considerations.
Partnership Opportunities

Program Partner

SCHRÖDINGER

Schrödinger is a science and technology leader in developing chemical simulation software aimed at transforming drug discovery research. The company’s products are used by nearly all the top pharmaceutical companies worldwide. Schrödinger also engages in drug discovery collaborations utilizing its best-in-class software solutions for modeling small molecules and protein therapeutics.

www.schrodinger.com

Program Partner

CHEMICAL COMPUTING GROUP

CCG (Chemical Computing Group) is a leading supplier of software solutions for life sciences. With a proven track record in scientific innovation, CCG continues to provide state-of-the-art applications in drug discovery to pharmaceutical, biotechnology and academic researchers. CCG’s software platform is the Molecular Operating Environment (MOE) which is used by computational chemists, medicinal chemists and biologists in the major pharmaceutical and biotechnology companies throughout the world.

www.chemcomp.com

Why partner with us?

The increased prevalence of biologic drugs in pipelines means that drug developers are actively looking to partner with solution providers who can enhance the development of these drug candidates.

Uniting key opinion leaders and influencers from the computational field, Computational Drug Development 2016 is the ideal platform both to assess the needs of drug developer organizations and to demonstrate expertise in this emerging area.

Align your solution with the areas of need that drug developers are experiencing. Our focused delegate audience are looking to partner with:

To find out more, email sponsor@hansonwade.com

Companies who have attended our biologics events

[Company logos]

Very useful – combined the delivery of cutting edge research with an opportunity to network. I normally go to major scientific meetings and have always been skeptical that smaller meetings like this could add anything useful – I have been proved wrong!

Aquila, previous partner

First class meeting – incredible opportunity to meet directly with a broad range of decision makers in this growing field.

Quanta Biodesign, previous partner

Partner With Us

Contact

Jason Williams
Commercial Manager
Tel: +44 203 141 8711
Email: sponsor@hansonwade.com

Tel: +1 212 537 5898 Email: info@hansonwade.com

Computational Drug Development

www.computationaldrugdevelopment.com
Pricing

Register

<table>
<thead>
<tr>
<th></th>
<th>Standard Pricing</th>
<th>Academic Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference + 2 Workshops</td>
<td>• 10% discount – 3 delegates
 • 15% discount – 4 delegates
 • 20% discount – 5+ or more delegates</td>
<td>• 10% discount – 3 delegates
 • 15% discount – 4 delegates
 • 20% discount – 5+ or more delegates</td>
</tr>
<tr>
<td>Register & Pay before October 7th, 2016</td>
<td>$3597 (save $500)</td>
<td>$2197 (save $400)</td>
</tr>
<tr>
<td>Register & Pay before November 11th, 2016</td>
<td>$3697 (save $400)</td>
<td>$2297 (save $300)</td>
</tr>
<tr>
<td>Standard Prices</td>
<td>$3797 (save $300)</td>
<td>$2397 (save $200)</td>
</tr>
<tr>
<td>Conference + 1 Workshop</td>
<td>• 10% discount – 3 delegates
 • 15% discount – 4 delegates
 • 20% discount – 5+ or more delegates</td>
<td>• 10% discount – 3 delegates
 • 15% discount – 4 delegates
 • 20% discount – 5+ or more delegates</td>
</tr>
<tr>
<td>Register & Pay before October 7th, 2016</td>
<td>$2399 (save $300)</td>
<td>$1399 (save $200)</td>
</tr>
<tr>
<td>Register & Pay before November 11th, 2016</td>
<td>$2499 (save $200)</td>
<td>$1499 (save $100)</td>
</tr>
<tr>
<td>Standard Prices</td>
<td>$2699</td>
<td>$1599</td>
</tr>
<tr>
<td>Conference Only</td>
<td>• 10% discount – 3 delegates
 • 15% discount – 4 delegates
 • 20% discount – 5+ or more delegates</td>
<td>• 10% discount – 3 delegates
 • 15% discount – 4 delegates
 • 20% discount – 5+ or more delegates</td>
</tr>
<tr>
<td>Register & Pay before October 7th, 2016</td>
<td>$2399 (save $300)</td>
<td>$1399 (save $200)</td>
</tr>
<tr>
<td>Register & Pay before November 11th, 2016</td>
<td>$2499 (save $200)</td>
<td>$1499 (save $100)</td>
</tr>
<tr>
<td>Standard Prices</td>
<td>$2699</td>
<td>$1599</td>
</tr>
<tr>
<td>Workshops (each)</td>
<td></td>
<td>$699</td>
</tr>
</tbody>
</table>

Team Discounts*

- 10% discount – 3 delegates
- 15% discount – 4 delegates
- 20% discount – 5+ or more delegates

Please note that discounts are only valid when three or more delegates from one company book and pay at the same time.

Top 3 Benefits of Attending

1. Learn how computational tools can enhance library design and candidate selection
2. Investigate how the developability of biologics can be improved using the latest computational approaches
3. Understand how the industry leaders have applied computational tools to benchmark against their progress

Venue

Aloft Boston Seaport

401-403 D St, Boston, MA 02210, United States

www.aloftbostonseaport.com

All talks were divergent and complimented each other well. Venue great, organisers brilliant and friendly.

GSK